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repeated until all the variations of X and T have 
been satisfied. 

TABLE I I I 

PEAK CURRENT AS A FUNCTION OP AT 

AT X 10« tpduamp.) &.ipa % error& 

20.00 0.7440 0.1412 26.0 
10.00 .8121 .0731 8.26 

5.000 .8479 .0373 4.21 
2.500 .8664 .0188 2.12 
1.250 .8758 .0094 1.06 
0.6250 .8805 .0047 0.53 
0.3125 .8829 .0023 0.26 
0.1563 .8841 .0011 0.13 
0 .8852° 0 0 

" Difference between peak current at indicated value of 
AT and peak current at AT = 0. b (AiJO.8852) X 100%. 
" Extrapolated. 

This calculation is very time consuming and 
tedious and is not practical unless computer facili-

The theory of the conductance of symmetrical 
electrolytes in dilute solutions now appears to be 
substantially complete; various parts of the deriva
tion of the final equation are, however, scattered 
among a number of different publications.2-11 

The purpose of this paper is to present a summary 
derivation for the case of 1-1 electrolytes, unob-
scured by mathematical details, and to describe 
the analysis of conductance data by means of the 
theory. 

Specific conductance, the experimentally ob
servable quantity, is given by the ratio of current 
density to field strength X and is therefore propor
tion to 2nietUi, where rc, is the number of ions of 
species i per unit volume and e,- and «,- are, respec
tively, their charge and mobility. The equivalent 
conductance A is defined as the ratio of 1000 times 

(1) Presented at 135th meeting of the American Chemical Society, 
5-10 April 1959, Boston, Massachusetts. 

(2) R. M. Fuoss and L. Onsager, Proc. Nat. Acad, Set'., 41, 274 
(1955). 

(3) R. M. Fuoss, J. Mm. phys., 53, 493 (1956). 
(4) R. M. Fuoss and L. Onsager, / . Phys. Chem., 61, 668 (1957). 
(5) R. M. Fuoss, T H I S JOURNAL, 79, 3301 (1957). 
(6) R. M. Fuoss and C. A. Kraus, ibid., 79, 3304 (1957). 
(7) R. M. Fuoss, ibid., 80, 3163 (1958). 
(8) R. M. Fuoss, ibid., 80, 5059 (1958). 
(9) R. M. Fuoss and L. Onsager, J. Phys. Chem., 62, 1339 (1958). 
(10) R. M. Fuoss, ibid., 63, 633 (1959). 
(11) R. M. Fuoss and F. Accascina, "La Conducibilita Elettrolitica," 

Edizioni dell'Ateneo. Rome, 1959. 

ties are available.17 This is particularly so since 
the accuracy of the method depends on using small 
values of AT to reduce the error. The convergence 
of the calculations for decreasing values of AT was 
checked using the standard set of experimental 
and kinetic parameters (Table III). 

As a compromise between accuracy and excessive 
machine time, a value of A r = 0.3125 X 10~4 was 
used in this work. The results can be considered 
accurate within about 0.3%. 
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(17) This problem was programmed for the IBM type 704 with the 
help of Mr. Lee F. Thompson of this Laboratory. It was Mr. Thomp
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the specific conductance to the concentration c in 
equivalents per liter. Consequently 

A ~ Xytut (1) 
where 7,- is the fraction of the ions of species i 
which actually contribute to transport of charge at 
a given concentration. The Debye-Hiickel-On-
sager theoiy assumes that 7,- equals unity and as
cribes the decrease of A with increasing concentra
tion to a decrease in mobility aiising from the 
electrostatic forces between the ions. The mo
bility is found to be 

Ui = (u*i - AUi) (1 + AX/X) (2) 
w h e r e M0,- is t h e l i m i t i n g m o b i l i t y a t inf in i te d i lu 
t ion , Aui is t h e e l e c t r o p h o r e t i c c o u n t e r - v e l o c i t y 1 2 ' 1 3 

of t h e s o l v e n t a n d AX is t h e b r a k i n g r e l a x a t i o n 
field14'16 w h i c h a n ion c r e a t e s b y i t s m o t i o n . T h e 
a s y m m e t r y in t h e a t m o s p h e r e of a m o v i n g ion 
also p r o d u c e s a v i r t u a l o s m o t i c force A P w h i c h 
s l igh t ly inc reases c o n d u c t a n c e , 9 a n d finally a cor
r e c t i o n m u s t in g e n e r a l b e m a d e for t h e inc rease in 
s t a t i c v i scos i ty of t h e so lu t ion d u e t o t h e p r e s e n c e of 
t h e ions. 6 S ince b o t h w°,- a n d Aui a r e i n v e r s e l y 
p r o p o r t i o n a l t o v i scos i ty , (2) b e c o m e s 

m = («»,• - AMv)(I + AX/X + AP/X)/(I + Fc) (3) 

(12) L. Onsager, Physik. Z., 27, 388 (1926). 
(13) L. Onsager and R. M. Fuoss, J. Phys. Chem., 36, 2689 (1932) 
(14) P. Debye and E. Huckel, Physik. Z., 24, 305 (1923). 
(15) L. Onsager, ibid., 28, 277 (1927). 
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Conductance of Dilute Solutions of 1-1 Electrolytes1 

BY RAYMOND M. FUOSS 

RECEIVED DECEMBER 24, 1958 

The conductance of solutions of 1-1 electrolytes decreases with increasing concentration because the mobility of the ions 
is decreased due to the action of long range interionic forces and because the concentration of free ions decreases due to associ
ation increasing with concentration. A conductance equation based on these effects is derived; it is applicable to 1-1 elec
trolytes in solvents of dielectric constant greater than about 15, at concentrations up to that corresponding to Ka ~ 0.2 (o = 
ionic diameter, K — Debye-Hiickel parameter). In solvents of high dielectric constant, the equation reduces to Onsager's 
limiting tangent while in solvents of low dielectric constant, it transforms into the classical Ostwald dilution law. In the 
intermediate range of dielectric constant, previously inaccessible to theoretical analysis, the equation describes conductance 
data in terms of three molecular parameters: the limiting conductance, the ion size and the association constant. Methods 
of applying the equation to experimental data are described. 
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where Fc equals 5/2 times the volume fraction of 
solute.16 

Real ions occupy space and like any other mole
cules, occasionally collide. Due to electrostatic 
at tract ion between opposite charges, the dwell t ime 
of a pair of ions which have collided will be greater 
than t ha t for two uncharged particles. During the 
time t ha t two ions remain in contact , neither ion 
can contribute to t ransport of charge, and neither 
ion is to be counted as the member of the atmos
phere of other ions because the pair present only 
a dipole field to distant ions. For symmetrical 
electrolytes, 71 = 72 and the identifying subscript 
can be dropped. By a device invented by Boltz-
mann, it can be shown8 t h a t 

KAc7T- = 1 - 7 (4) 
where KA. is a constant and / is the mean activity 
coefficient, given by17 

- I n / = Ke'/2DkT( 1 + Ka) (5) 

The dynamic equilibrium between pairs of ions in 
contact and those at large distances from other 
ions thus follows the formal algebra of the classical 
thermodynamic law of mass action. Symbolically, 
then, the conductance of symmetrical electrolytes is 
expressed by the equation 

A = 7(A0 - AA)(I + AX/X + APAYV(I + Fc) (6) 
The theoretical evaluation of the various terms 

in (6) proceeds as follows. First, a model is chosen 
to represent the electrolytic system. The simplest 
model which includes the minimum number of 
properties which are necessary for a theoretical 
t rea tment consists of charged spheres of diameter 
a to represent t he ions and a continuum to represent 
the solvent. (The impossibility of determining 
single ion activities requires t ha t both anions and 
cations be represented by spheres of the same size; 
it obviously would be pointless to complicate the 
algebra by introducing two diameters O1 and a^ if 
experiment can only give the center to center 
distance of two ions at contact.) Using this model, 
the Navier-Stokes equation can be integrated,4 '10 

to give the velocity field which is created in an 
electrolytic solution when the ions are in motion 
under the influence of an external electrical field. 
The final result is 

AA = jSc 'A/( l + KO) (7) 

for t he electrophoretic term in the conductance. 
Here /3 is t he Onsager coefficient12*13 

j3 = 0-3^/37TfJoC1''2 (8) 

where <r = (299.79)_ 1 converts electrostatic units 
to practical ones, 5 is t he Faraday equivalent, e 
is the electronic charge, K is t he Debye-Hiickel 
parameter and Tj0 is solvent viscosity. 

In t h e absence of an external field, t he ionic 
atmospheres are spherically symmetric; a perturba
tion in the distribution appears when the ions are 
subjected to an external field. Theoretical in
vestigation of the asymmetry leads to a fourth-
order differential equation; its integration2 '4 gives 
the asymmetry potential which produces the relaxa
tion effect. A ra ther complicated function of 
M is found for AAT; for the case of dilute solutions, 
defined for present purposes as those for which 
Ka < 0.2, this function can be adequately approxi-

(10) A. Einstein, Ann. Phys., 19, 289 (1006); 34, 591 (1911). 
(17) P. Debye and E. Huekel. Physik. Z.. 24, 185 (1923). 

mated to give 
-AX/X = ac'A (1 - A, + A2) + AX1./X (9) 

where 

acVi (A1 - A2) = (K
2o262/12) [0,9074 + In KO. + 
g(b) + Ka (0.7620 - 0.707Ig)] (10) 

and 
-AXJX = Wab/§-K-q(ux + U2)] [0.2543 -f 

0.25 In KO + 1/66] (11) 

The leading term of (9) is the Onsager limiting 
value16 for the relaxation effect in the conductance 

ac'A = e V 6 W r ( l + V 2 ) (12) 

The parameter b, introduced by Bjerrum,18 is 
defined as 

b = e°-/aDkT (13) 

and g is a function of b 

g(b) = (1 + 26)/62 (14) 

The reciprocal friction coefficients &u and «2 in 
(11) translate into limiting single ion conductances 
when (11) is substi tuted into (6). In the final 
conductance equation, t he term of order n3a3 

in (10) is dropped, because its coefficient is very 
small, going through zero at b = 2.266. The re
tention of this term up to the point in the derivation 
represented by equation 10 was a necessary con
sequence of the expansion of the exponential 
integrals which appear in the explicit form of the 
relaxation field. The approximate cancellation 
in (0.7620-0.707Ig), which permits dropping the 
term a t this stage, only becomes apparent when 
higher terms from the exponential integrals are 
combined with terms from other sources.11 

Finally, for the osmotic term AP, the value 

AP = Xec[(b ~ l)/63][K2a262/12c] (15) 

was found9 by integrating t h e virtual force field 
around the reference ion, which is produced by its 
impacts with other ions. 

When (7), (9) and (15) are subst i tuted in (6), 
the result, after rearrangement, is 
A= 7(A0 - Sc1AyA + Ecy log cy + Joy)/(I + Fc) 

(10) 
where 

S = 
E = 
E1 = 
E2 = 
J = 
Cl = 

(T2 = 

aAo + /3 
EiA0 - E2 

: 2.3026(«2<z262/24c) 
•• 2 .3026(KO6/3/16C'A) 

criAo + C2 

(KWbyi2c)[h(b) + 0.9074 + In (m/c 
a/3 + (11/WlSc 1A) -

1A)] 

(Ka6/3/8c'A)[1.0170 + In (KO/C'A)] 

h(b) = (2b2 + 26 - l)/6» 

F = TNR*/300 = 0.308 X 1021i?3 

The Einstein coefficient F above is the value for a 
salt with one ion much larger than the other 
(e.g., Bu 4 NBr) ; if both ions are large (e.g., Bu4N-
BPh4), F = 12,62 X 1021i?3 where R is t he average 
hydrodynamic radius. The accompanying table 
summarizes the useful combinations of parameters 
which appear in (16); the numerical values of the 
universal constants used in the calculation were 
those recommended19 in 1952. For convenience, 

(IS) N. Bjerrum, KgI. Danske Vidensk. Selskab., 7, No. 9 (1926). 
(19) F. D. Rossini, F. T. Gucker, Jr., H. L. Johnston, L. Pauling 

and G. W. Vinal, THIS JOURNAL, 74, 2699 (1952). 
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TABLB I 

NUMERICAL VALUES OP CONSTANTS AT 25° 

a = 159.35/D'/1 

/3 = 4 . 7 7 7 9 A J Z ) ' / 2 

E1 = 2.5559 X 105/D3 

E2 = 1122.3M>2 

ab = 560.37 X 10"V-D 
n/ch = 2.9127 X 108/£>I/2 

K
2a262/12c = 2.2200 X 106AD3 

11 0K/12C'/2 = 12.757 X 108AZ) 
Kab8/8c'/2 = 9 7 4 . 8 / T J D 2 

2 / 3 " = 708.85/D s / 2 

0.4343 e2/&r25 = 243.3 X 10"8 

t h e coefficient 2 / 3 " in - l o g / 2 = -2/3"C1Z2Y1Z2 i s 

also i n c l u d e d . 
W e n o w sha l l c o n s i d e r t h e a p p l i c a t i o n of (16) 

t o c o n d u c t a n c e d a t a . T h e e q u a t i o n 2 0 c o n t a i n s 
t h r e e a r b i t r a r y c o n s t a n t s , Ao expl ic i t ly , a n d a 
( t h r o u g h J) a n d KA ( t h r o u g h 7 ) imp l i c i t l y . T h e 
p r o b l e m is t o d e r i v e v a l u e s for t h e s e c o n s t a n t s f rom 
a m e a s u r e d se t of A, c v a l u e s . I f ionic a s soc ia t ion 
is negl ig ib le , y m a y b e r e p l a c e d b y u n i t y , a n d 
(16) r e d u c e s t o 

A, = A0 - 5^1A + Ec log c + Jc (17) 
w h e r e 

A, = A(I + Fc) (18) 

T h e a u x i l i a r y v a r i a b l e A, c a n b e c o m p u t e d if 
v i s c o s i t y d a t a a r e ava i l ab l e , b e c a u s e 

F = Kv - Vo)Zm - Sr1Ch]Zc (19) 

w h e r e 5 , is t h e F a l k e n h a g e n - D o l e coefficient2 1 

Sn = (/3/32O)(A0/ X1OXJO)U - 0.6863[(X1" - X2»)/A0]
2) 
(20) 

If t h e s ingle ion c o n d u c t a n c e s a r e n e a r l y t h e s a m e , 
(20) m a y b e a p p r o x i m a t e d b y t h e s i m p l e r exp re s 
s ion 

5 , « /3/80A„ (21) 

If v i s c o s i t y d a t a a r e n o t a v a i l a b l e , t h e E i n s t e i n 
t e r m c a n b e a p p r o x i m a t e d b y e s t i m a t i n g R; 
a l t e r n a t i v e l y , (18) is a p p r o x i m a t e l y 

A, « A + FA0C (22) 

a n d (17) b e c o m e s 

A = A0 - Sc1Zi + Ec log c + Jc - FA0C (23) 

T h e n t h e coefficient of t h e l inea r t e r m (J-FA0)C 
m u s t b e s e p a r a t e d i n t o i t s c o m p o n e n t s . 6 F o r 
s i m p l e i n o r g a n i c sa l t s , FA0C is negl ig ib le , b u t i t 
is c l ea r ly v i s ib le in t h e case of e l e c t r o l y t e s w i t h 
l a rge ions s u c h a s t h e q u a t e r n a r y a m m o n i u m 
sa l t s . 

A p r e l i m i n a r y v a l u e of Ao, o b t a i n e d b y e x t r a p o 
l a t i o n of S h e d l o v s k y ' s f unc t ion 2 2 

A'o = (A + /Je1AV(I - ac'A) (24) 

is u s e d t o c o m p u t e 5 a n d E. T h e n 

A' , = A, + 5C1A - Ec log c (25) 

is p l o t t e d a g a i n s t c o n c e n t r a t i o n ; s ince 

(20) The equation differs from (18) of ref. 5 in the following details: 
(1) The terms in C3A have been dropped. (2) Ji is replaced by / 
and Bi, Bi by ai, <T2. In m, h(b) replaces g(b) of Bi, to include the term 
AP. In 0-2, 11/12 replaces 8/9 and 1.0170 replaces 0.8504; these small 
numerical changes resulted from the detailed study of the velocity field 
(ref. 10). 

(21) H. Falkenhagen and M. Dole, Z. physik. Chem., 6, 159 (1929); 
Physik. Z., 30, 611 (1929). 

(22) T. Shedlovsky, THIS JOURNAL, Si, 1405 (1932). 

A', = A0 + Jc (26) 

w e see t h a t Ao a n d J a r e d e t e r m i n e d a s i n t e r c e p t 
a n d s lope of t h e r e s u l t i n g s t r a i g h t l ine . (If t h e 
v a l u e of Ao so o b t a i n e d is s igni f icant ly d i f ferent 
f rom t h e p r e l i m i n a r y v a l u e , S a n d E a r e r e c o m 
p u t e d a n d t h e e x t r a p o l a t i o n is r e p e a t e d . ) F i n a l l y , 
f rom a p l o t of / a g a i n s t a, t h e v a l u e of t h e ion size 
is i n t e r p o l a t e d . 

W h e n a s soc ia t ion is n o t negl ig ible , e q u a t i o n s 4 
a n d 16 a r e c o m b i n e d t o g ive 

A, = A0 - S(C7)V* + Ec-/ log cy + Joy - KxC7PAn 

(27) 

a n d t h e n we redef ine A ' , a s 

A', = A, + S(cy)1" - Ec7 log C7 (28) 

N e w v a r i a b l e s t h e n a r e d e n n e d 

AA i. = A' , - A0 

y = AA/cy 

x = / 2A, 

(29) 

(30) 

(31) 

w h i c h c o n v e r t t h e c o n d u c t a n c e f u n c t i o n t o t h e 
l inear fo rm 

y = J - KAX (32) 

a n d h e n c e a p l o t of y a g a i n s t x e v a l u a t e s / a n d 
KA- I n o r d e r t o c o m p u t e t h e v a r i a b l e y, v a l u e s of 
7 a n d A0 a r e n e e d e d . N o w t h e t e r m s in E a n d J 
a r e of o p p o s i t e s i g n : if t h e y a r e b o t h n e g l e c t e d t h e 
c o n d u c t a n c e e q u a t i o n r e d u c e s t o 

A = 7(Ao - 5C1A7
1A) (33) 

t h e modif ied f o r m of t h e O s t w a l d d i lu t i on l a w u s e d 
f o r m e r l y for a n a l y s i s of c o n d u c t a n c e d a t a . 2 3 

I n t r o d u c t i o n of a v a r i a b l e z, def ined b y 

z = 5A0-3A (CA)1A (34) 

t r a n s f o r m s (33) i n t o 

7 = AfA0F(Z) (35) 

T h e func t ion F(z) h a s b e e n t a b u l a t e d . 2 4 I n o rde r 
t o u s e (32) , a p r e l i m i n a r y v a l u e of A0, o b t a i n e d b y 
W a l d e n ' s ru l e o r b y a f r e e - h a n d e x t r a p o l a t i o n of 
t h e p h o r e o g r a m , is u s e d t o c o m p u t e S, E a n d z; 
t h e n 7 is o b t a i n e d f rom (35) a n d A ' , a n d x are 
c a l c u l a t e d . T r i a l v a l u e s of Ao a r e u s e d in AA a n d 
y u n t i l t h e c o r r e c t o n e is f o u n d ; t h e " c o r r e c t " 
o n e is t h e v a l u e w h i c h l inear izes t h e y-x p l o t . T o o 
smal l a t r i a l v a l u e g ives a c u r v e w h i c h is c o n c a v e 
u p , whi le t o o l a rge a v a l u e l e ads t o a y-x p l o t w h i c h 
is c o n c a v e d o w n . T h e n in second a p p r o x i m a t i o n , 
7 is c a l c u l a t e d b y t h e e q u a t i o n 

7? = A,/(Ao - 5C1A7
1A + Ec7 log C7 + Jc7) (36) 

w h e r e , on t h e r i g h t - h a n d s ide , t h e first a p p r o x i 
m a t i o n for 7 f rom (35) a n d t h e v a l u e s j u s t o b t a i n e d 
f o r Ao a n d / a r e u sed . T h e n a s e c o n d y-x 
p l o t is m a d e . 

T h e p r o c e d u r e c a n of cour se b e c o n s i d e r a b l y 
s implif ied if o n e of t h e c o n s t a n t s is known. 2 6 ' 2 6 

F o r e x a m p l e , if t h e assoc i t ion c o n s t a n t is k n o w n , a 
p l o t of A/ a g a i n s t cy, w h e r e 

(23) R. M. Fuoss and C. A. Kraus, ibid., 55, 476 (1933); R. M. 
Fuoss, Chem. Revs., 17, 27 (1935). 

(24) R. M. Fuoss, THIS JOURNAL, 87, 488 (1935). 
(25) F. Accascina, A. D'Aprano and R. M. Fuoss, ibid., 81, 1058 

(1959). 
(26) F. Accascina, S. Petrucci and R. M. Fuoss, ibid., 81, 1301 

(1959). 
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Aj = A ' , + KAcyfAn (37) 

= A0 + Jcy (38) 

evaluates A0 and J; on the other hand, if / is 
known (from a known a-value), a plot of A^ 
against CyJ1Kn evaluates KA 

AK = A ' , - Jcy (39) 

= A0 - X A C T Z 2 A , (40) 

The first case occurs if the association constant 
satisfies the condition 

^ A = K«A e» (41) 

provided tha t JT0A is independent of solvent. 
Then values of KA in solvents of high dielectric 
constant can be obtained by extrapolating on a 
log KA — 1/D plot. In such solvents, association 
is slight, and the y-x plots are practically horizontal 
and hence useless for evaluating KA- On the other 
hand, when the dielectric constant is small, the 
constant J becomes a small difference between two 
much larger quantities (J = y + K&x, y < 0) 
and cannot be directly determined with any 
certainty. Then, assuming tha t a is independent 
of solvent composition, / can be computed, using 
the value obtained for a given salt in solvents of 
high dielectric constant, and KA is obtained by use 
of (40) or as the slope of a plot of (y + Jcy) 
against x. 

As was mentioned above, the terms Jcy and 
Ecy log cy are of opposite sign, since cy<l in any 
practical case. When the dielectric constant of 
the solvent is less than about 20, the term in 
KA completely dominates the J and E terms, be
cause KA varies exponentially as D~l while / and 
E are essentially algebraic functions of D. Also, 
for this range of dielectric constant, J and E can 
be fairly well approximated by their first terms 

E « B1A0, J « <riAo (42) 

because the second terms are smaller than the 
first for any dielectric constant, and increase 
relatively slowly with decreasing dielectric con
stant . Hence 

J ~ KW>A0kj/12c (43) 

and kj is a numerical constant in the range 2 to 3. 
Likewise 

E ~ 2 . 3 0 3 K 2 O 2 J 2 A O / 2 4 C (44) 

and in the usual working range of concentration, 
log c varies slowly from about minus 4 or 5 to 
minus 2 or 3. Hence 

E log c « - K2a262A0*E/12c (45) 

w;here ks is a quasi-constant also in the range 2 to 
3. Therefore the simultaneous neglect of both 
terms in replacing (27) by (33), the device used 
above in first approximation for y, is justified. 

A final comment concerning the range of appli
cability of (27) is needed. The integration of the 
equation of continuity, which leads to the relaxa
tion field, yields an unwieldy collection of trans
cendental and algebraic terms. This function of 
Ka can be simplified to a usable form by series 
expansion, bu t the expansion in turn becomes 
awkward to use if too many terms are retained. 
Therefore only terms up to order c , / ! were retained 
in order to avoid an inconveniently long series. 
Numerically, this approximation is reliable only 

over the range 0 ^ na ^ 0.2 and obviously (27) 
should never be applied to data for higher con
centrations than correspond to «z«0 .2 . This 
cut-off has physical justification on two counts : 
(1) for wz>0.2, ions are on the average so near each 
other tha t the Debye model of a continuous space 
charge (ion atmosphere) becomes unrealistic and 
(2) in the equation of continuity which was inte
grated, terms which would lead to terms in the 
conductance of order c'h were dropped. The 
limit Ka ss 0.2 is practically useful in the design of 
conductance experiments, in that it states the 
highest concentration which is worth measuring, 
if the goal of the research is a reduction of the data 
to molecular parameters. 

The general equation 27 has two limiting forms 
which have long been familiar: at low concentra
tions in solvents of high dielectric constant, it 
reduces to the Onsager limiting tangent, while in 
solvents of low dielectric constant, it reduces to the 
Ostwald dilution law. I t therefore permits analysis 
of conductance data in any solvent (down to the 
range where triple ions and higher clusters must also 
be considered.27) In smenocolytic solvents,28 or 
for salts'29 with very large ions in solvents of inter
mediate dielectric constant, the phoreogram usually 
lies above the Onsager tangent (anabatic) and 
conductance data can only give A0 and a. In 
smenogenic solvents, on the other hand, association 
controls, and the data give only A0 and KA; in 
fact, if the dielectric constant is low enough, only 
the ratio A 0

2 /A 'A can be evaluated from conduct
ance data. In the intermediate range, the data 
evaluate all three constants, A0, a and KA-

As the dielectric constant decreases, a continuous 
transition in the appearance of the conductance 
curve is observed: first, it drops below the Onsager 
tangent and becomes concave-down (catabatic). 
Usually this behavior indicates the onset of associ
ation (although some cases are known where the c 
log c term is numerically larger then Jc, and hence 
here a catabatic curve is also obtained, even when 
KA is negligibly small). With further decrease in 
D, an inflection point appears in the working range 
of concentrations, due to the appearance of the 
product in (6): y decreases from unity initially as 
the first power of c and asymptotically approaches 
zero while the mobility terms decrease initially 
as cl/i. In the inflection range, the curve simu
lates linearity, of course; this behavior explains 
the (erroneous) statements tha t conductance curves 
"obey a square root law, bu t with a slope larger 
than the theoretical." With further decrease in 
D, the A — c' / ! curves become very steep; here 
a log A — log c plot is preferable. A slope of 
minus one-half on the latter scale means tha t the 
ion-ion pair equilibrium controls the behavior of 
the solute. Equat ion 27 thus bridges the former 
gap between systems with negligible association and 
those with marked association and provides a math
ematical description of the transition. 
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